Options for Renewable Natural Gas (RNG) in a Low-Carbon Future Processing Methods for Large Scale Conversion of Seaweed to Energy-Relevant Products November 16 Jack Lewnard Program Director, DOE ARPA-E Agency <u>Jack.lewnard@hq.doe.gov</u> #### Natural gas use today US uses 32 quad natural gas, emits 2.1 B ton CO₂ - ▶ 11 quads Power Generation - ▶ 10 quad Industrial - 1 quad for Chemicals - 9 quad Residential/ Commercial, primarily for heat Large, constant loads served by interstate pipelines Small, seasonal loads served by gas utilities 1 quad Parasitic load – compressors ### Best Fit for RNG: Decarbonizing Res/Com Segment | Current | Delivery point | \$/MMBtu | \$/MWhr | |-------------|----------------|----------|---------| | Natural Gas | Henry Hub | 2.57 | 9 | | | Power Plant | 2.98 | 10 | | | Industrial | 3.85 | 13 | | | Commercial | 7.28 | 25 | | | Residential | 12.80 | 44 | | Electricity | Power Plant | 19.42 | 61 | | | Industrial | 21.65 | 68 | | | Commercial | 31.06 | 106 | | | Residential | 41.38 | 130 | - Res/Com will be the most expensive sector to decarbonize - Res/Com already pays the highest price for delivered energy - Electricity 3-4X cost of gas - Alternatively, there's a lot "space" to pay more for RNG - Electrification requires massive expansion of electric generation, T&D, and retrofitting 75 MM homes and businesses - Replacing fossil gas with renewable gas requires massive expansion of RNG production ### **Electrification Challenge: CAPEX for Supply Chain** - Adding thermal load will require major expansion of Res/Com T&D - Electric grid winter peaks increase 2-3X - >2X expansion of electric T&D - T&D costs amplified by < 50% utilization - Need to upgrade service and replace gas appliances for 75 MM customers - Conversions are expensive, disruptive, and difficult to execute - "Death spiral" for unconverted customers - Res/Com electric grid also targeted for vehicle electrification - Demand potentially larger than thermal peak #### RNG: Can Afford to Pay More, but Need New Sources - US uses 32 quads of gas; Res/Com 9 quads - ~1-3 quads RNG from "Traditional" sources (manure, wastewater, landfill) - ~5 quads (max) from sustainable biomass (wood, energy crops) - Power-to-Gas (P2G) limited only by cost Figure 29. Combined source supply curve of RNG RNG Cost curve - California #### Renewable feedstock competitors - Competitive line-up - Seaweed - Biogas (manure, wastewater, landfills) - Wood - FOGs (fats, oil, grease) - Electricity (Power-to-Gas; Power-to-X) - Fossil natural gas - With DAC (net zero carbon for all applications) - With CCS (net zero carbon for power generation) - Issues - Cost - Availability - Transport-ability - Store-ability - Community license to operate #### RNG Sources and Economics - Traditional | Feed | Feed Cost
(\$/MMBtu) | Process | RNG production (\$/MMBtu) | Issues | |--------------------------|---|---------------------------------|---------------------------|---| | Dairy manure | "free" manure, sometimes has negative value | AD/membrane/
compressor | \$8-30 | Scale – typically small. 1000 cows = 40K scfd. Distant from population, gas infrastructure Economical due to low CI | | Wastewater treatment gas | "free" raw gas,
unless used in
boilers | 2-stage clean-up/
compressor | \$6-10 | Few plants at ~1MM SCFD scale; near population | | Landfill gas | "free" raw gas –
regulations require
collection | Multi-train clean-up/compressor | \$6-15 @ 2MM
SCFD | Need large scale to be economic | ### RNG Sources and Economics – "Novel" | Feed | Feed Cost
(\$/MMBtu) | Process | Processing cost (\$/MMBtu) | Issues | | | | |-----------------------------|------------------------------------|-------------------------|---|---|--|--|--| | Seaweed | \$100/dry ton =
\$9/MMBtu | Assume same as dairy? | \$15-50
Assume production
costs same as
dairy? | Scale Location: proximity to population and gas infrastructure Thermal balance for digester | | | | | Wood | \$5-10/MM Btu | Gasification | \$13-15 | Scale: 900 tpd wood, 8MMSCFD | | | | | Renewable electricity + DAC | | Power-to-gas | \$25+ | 2030 estimate | | | | | Fossil gas with DAC | \$4 (interstate pipeline delivery) | DAC:\$50-250/ton
CO2 | \$4+ \$3.4 = \$7.4
\$4 + 17 = \$21 | Acceptable to continue burning fossil fuel? | | | | | Fossil gas with CCS | \$4 (interstate pipeline delivery) | CCS: \$100/ton CO2 | \$4 + \$6.8 = \$11 | Relevant for power gen only | | | | #### Reality Check: 80% GHG Reduction CA by 2050 Energy+Environmental Economics (2015) bottom-up analysis Pathways (v.2.1) - Electrification scenario, where all energy end uses, to the extent feasible, are electrified and powered by renewable electricity by 2050; - Mixed scenario, where both electricity and decarbonized gas play significant roles in California's energy supply by 2050 - Parity within error of model: - Renewable CH₄ in 2050 \$20-25/MMBtu Anaerobic digester \$30-138/MMBtu Electrolysis + methanation + DAC - Renewable H₂ in 2050 \$24-112/MMBtu Electrolysis limited to 20% concentration in pipeline - Gas demand unchanged from reference (do nothing) case, but fossil gas <10%, RNG >80%, balance CH₄ and H₂ from electrolysis #### **Conclusions** - RNG's best fit is decarbonizing Res/Com sector - but role will be limited if it's ok to burn fossil gas and compensate with DAC - RNG needs new sources - Possibly wood, seaweed, P2G - ► To compete, novel feedstocks need to: - Beat Res/Com heating electrification - Reduce feedstock cost, minimize logistics/transportation, - If using digester, needs to be thermally neutral or positive - Be at scale, >100,000 scfd - Have carbon selectivity to methane > 50% - Possibly upgrade waste CO₂ to methane? - Get built close to population centers and existing gas infrastructure #### Manage Supply/Demand Swings #### Need long-term storage and largescale transmission - Res/Com thermal loads drive annual energy swings - Major winter heating peaks - Minor summer cooling loads - Renewable generation peaks not in sync with demand - Natural gas storage balances supply/demand for thermal and electric loads today - Best renewable resources not near population centers, and #### Factors in End Users' Energy Cost - Energy cost - ► Transmission, Distribution, Storage - Regulated energy systems designed to meet peak load, often few hours/year - Electric grid: peak + 10-20% reserves - Gas grid: "design day" (coldest temp) - Northern electric and gas utilities are both winter-peaking - Southern utilities seeing increases in summer peaks - End Use Appliance Cost - Replacement costs - Service upgrades ### Why RNG: Natural gas use today US uses 32 quad natural gas, emits 2.1 B ton CO₂ - 11 quads Power Generation, 1580 TWhr electricity - ▶ 10 quad Industrial - 3 quad combined heat/power, 500 TWhr - 7 quad heat 16 quad heat - 9 quad Res/Com for heat - 1 quad for Chemicals - 1 quad Parasitic load compressors 14 quad power #### Gas Grid for Large Scale Energy Storage/Transmission - US NG storage capacity 4.8 quad/830 TWhr - \$83 T CAPEX for Li battery @\$100/kw-hr - Infrastructure in place - Zero self-discharge - Gas storage costs <\$1/kW-hr for a year of storage - Gas transmission - >250,000 miles high-pressure gas transmission - 42" pipeline carries ~40 GW(thermal) for 2500 miles with ~2% parasitic load for compressors - 765 kV transmission line carries 2.3 GW(electric) for 300 miles with ~1.5% power loss - Cost to move gas 2500 miles ~\$1.5/MMBtu #### Electricity Generation: Green Gas vs CCS vs All Renewables ## NETL Cost and Performance Baseline for Fossil Plants - NGCC/CCS vs NGCC with Green Gas - CCS adds ~\$31.1/MW-hr to NGCC LCOE - Base case gas cost \$4.42/MMBtu - Parity GG cost \$9.31/MMBtu - Coal/CCS vs with NGCC Green Gas - Subcritical coal/CCS \$116/MW-hr - Supercritical coal/CCS \$114/MW-hr - Parity CC cost \$15.80/MMBtu - No infrastructure investment required for Renewable CH₄ - drop-in fuel in NGCC ### Green Gas Production in the Energy Landscape #### "Feeds" intersect with: - Biomass-to-energy (~5 quad carbon limitation) - ► H₂ Economy - Carbon Capture/Utilization ("unlimited" carbon) - Zero-carbon electricity #### **Applications intersect with:** - Res/Com/Industrial/Power Gen/Transportation applications for natural gas and hydrogen - Decarbonizing the gas grid - Power-to-Gas (P2G) - Energy storage, integration of renewables in the electric grid - Maximizing carbon yield for biofuels and chemicals #### **Processes intersect with:** - Anaerobic digestion, biomasss gasification, synthetic biology, electrobiology - H₂ production nuclear/thermal, electrochemical, methane pyrolysis - CO₂ conversion biological, catalytic, electrochemical, photochemical ### **Bracketing Solutions** | Option | NG grid
mix/flow
Quad/(Bft ³ /hr) | New pipes | CCS
MM ton/yr) | Electric
generation/
storage | Electric
T&D | End user | CO2 | |---|--|--------------------------------------|-------------------|---|-----------------------------------|-----------|-----------------| | Base case | 32 Q Fossil
4 Bft ³ /hr | 0 | 0 | 100 GW wind,
100 GW nuke
450 GW natural
gas
1000 GW total | 5.5. MM
miles T&D
4100 TWhr | No Change | 2.2 B
ton/yr | | 1: Use existing technology Maximize use of biogas (0.4 Q) + biomass (1 B ton, 10 Q) Replace gas power with renewables | 6 Q RNG
15 Q Fossil
3 Bft ³ /hr | 0 | 0 | 450 GW wind + >3
TWhr storage
Or
200 GW nuclear +
<2 TWhr storage | No Change | No Change | 2.8 B
ton/yr | | 2a: 1+ CCS on gas-
fired power | 6 Q RNG
26 Q Fossil
4 Bft ³ /hr | 1.4 Bft ³ /hr
CO2 grid | 800 | No Change | No Change | No Change | 1B ton/yr | | 2b: 1+ replace gas power with renewables | 6 Q RNG
15 Q Fossil
3 Bft ³ /hr | | No Change | | No Change | No Change | 1B ton/yr | #### **Bracketing Solutions – Assume CCS for NG-fired electricity** | Option | NG grid
mix/flow
Quad/(Bft³/hr) | New pipes
(Bft³/hr) | ccs | Additional Electric generation/ storage | Electric
T&D | End user | CO2
MMTon
/yr | |--|---|--|---|--|--|---|---------------------| | 3: 1 + 2a + electrify everything else | 6 Q RNG
11 Q Fossil
2 Bft ³ /hr | 1.4 Bft ³ /hr
CO2 grid | 800 MM ton/yr | 1400 GW wind
>3 TWhr storage
or
600 GW nuke +
>2TWhr storage | Increase peak capacity >3X for winter- peaking utilities | Convert
70% of 80 MM
Res/Com
customers to
electricity | 0 | | 3: 1 + 2a + H2
with load-following
electrolysis located
at power plants | 6 Q RNG
11 Q Fossil
2 Bft ³ /hr | 1.4 Bft ³ /hr
CO2 grid
+
5.6 Bft ³ /hr
H2 grid | 800 MM ton/yr | 1700 GW wind
or
750 GW nuke | No change | Convert
70% of 80 MM
Res/Com
customers to
H2 | 0 | | 3: 1 + 2a + CH4 with load-following electrolysis located at power plants | 6 Q RNG
11 Q Fossil
15 Q e-CH4
4 BBft ³ /hr | 3.3 Bft ³ /hr
CO2 grid | 800 MM ton/yr
+
1100 MM ton/yr
DAC for e-CH4 | >2000 GW wind
or
>1000 GW nuke | No change | No change | 0 |